The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201584 Decimal expansion of greatest x satisfying 2*x^2 = csc(x) and 0
 3, 0, 8, 9, 1, 7, 4, 2, 1, 1, 9, 2, 9, 9, 3, 0, 2, 0, 6, 5, 6, 0, 5, 7, 7, 4, 8, 7, 8, 6, 9, 9, 7, 3, 8, 0, 4, 9, 3, 7, 1, 6, 3, 0, 9, 6, 5, 6, 6, 7, 2, 1, 0, 0, 2, 6, 5, 8, 0, 5, 8, 8, 2, 2, 6, 9, 1, 1, 0, 0, 8, 9, 9, 1, 3, 2, 5, 0, 5, 1, 6, 3, 6, 1, 8, 4, 8, 9, 4, 4, 8, 0, 0, 1, 6, 6, 3, 6, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A201564 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE least:  0.825028924015006339333946318183357978692... greatest:  3.089174211929930206560577487869973804... MATHEMATICA a = 2; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110] RealDigits[r]    (* A201583 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r]    (* A201584 *) PROG (PARI) a=2; c=0; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018 CROSSREFS Cf. A201564. Sequence in context: A155876 A181977 A199659 * A281298 A095123 A019691 Adjacent sequences:  A201581 A201582 A201583 * A201585 A201586 A201587 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 03:09 EST 2021. Contains 340249 sequences. (Running on oeis4.)