login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of greatest x satisfying 2*x^2 = csc(x) and 0<x<Pi.
3

%I #11 Jan 30 2025 13:55:27

%S 3,0,8,9,1,7,4,2,1,1,9,2,9,9,3,0,2,0,6,5,6,0,5,7,7,4,8,7,8,6,9,9,7,3,

%T 8,0,4,9,3,7,1,6,3,0,9,6,5,6,6,7,2,1,0,0,2,6,5,8,0,5,8,8,2,2,6,9,1,1,

%U 0,0,8,9,9,1,3,2,5,0,5,1,6,3,6,1,8,4,8,9,4,4,8,0,0,1,6,6,3,6,6

%N Decimal expansion of greatest x satisfying 2*x^2 = csc(x) and 0<x<Pi.

%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A201584/b201584.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e least: 0.825028924015006339333946318183357978692...

%e greatest: 3.089174211929930206560577487869973804...

%t a = 2; c = 0;

%t f[x_] := a*x^2 + c; g[x_] := Csc[x]

%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201583 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201584 *)

%o (PARI) a=2; c=0; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 22 2018

%Y Cf. A201564.

%K nonn,cons,changed

%O 1,1

%A _Clark Kimberling_, Dec 03 2011