The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199659 Expansion of q^(1/4) * (eta(q) / eta(q^3))^3 in powers of q. 4
 1, -3, 0, 8, -9, 0, 17, -27, 0, 46, -57, 0, 98, -126, 0, 198, -243, 0, 371, -465, 0, 692, -828, 0, 1205, -1458, 0, 2082, -2463, 0, 3463, -4104, 0, 5678, -6642, 0, 9085, -10623, 0, 14370, -16632, 0, 22273, -25758, 0, 34178, -39246, 0, 51674, -59220, 0, 77362 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (f(-x) / f(-x^3))^3 in powers of x where f() is a Ramanujan theta function. Euler transform of period 3 sequence [ -3, -3, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(3/2) / f(t) where q = exp(2 Pi i t). G.f.: (Product_{k>0} (1 - x^k) / (1 - x^(3*k)))^3. Convolution cube of A137569. Convolution square is A007262. Convolution fourth power is A030182. a(3*n + 2) = 0. a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A046913(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017 EXAMPLE 1 - 3*x + 8*x^3 - 9*x^4 + 17*x^6 - 27*x^7 + 46*x^9 - 57*x^10 + 98*x^12 + ... 1/q - 3*q^3 + 8*q^11 - 9*q^15 + 17*q^23 - 27*q^27 + 46*q^35 - 57*q^39 + ... MATHEMATICA QP = QPochhammer; s = (QP[q]/QP[q^3])^3 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^3, n))} CROSSREFS Cf. A007262, A030182, A137569. Sequence in context: A021768 A155876 A181977 * A201584 A281298 A095123 Adjacent sequences: A199656 A199657 A199658 * A199660 A199661 A199662 KEYWORD sign AUTHOR Michael Somos, Nov 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)