OFFSET
0,1
COMMENTS
Numbers of the form k^m*(k^m - 1) + 1 with m > 0, k > 1 may be primes only if m is 3-smooth, because these numbers are Phi(6,k^m) and cyclotomic factorizations apply to any prime divisors > 3. This sequence is a subset of A205506 with only m=6^n.
Numbers of this form are Generalized unique primes. a(6) generates a 306477-digit prime.
LINKS
C. Caldwell, Generalized unique primes
FORMULA
a(n) = A085398(6^(n+1)). - Jinyuan Wang, Jan 01 2023
EXAMPLE
When k = 88, k^72 - k^36 + 1 is prime. Since this isn't prime for k < 88, a(2) = 88.
PROG
(PARI) a(n)=k=1; while(!ispseudoprime(k^(6^n)*(k^(6^n)-1)+1), k++); k
n=0; while(n<100, print1(a(n), ", "); n++)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Serge Batalov, Aug 14 2014
EXTENSIONS
a(6) from Serge Batalov, Aug 15 2014
STATUS
approved