login
A356788
E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x)^2.
7
1, 0, 2, 3, 88, 485, 13896, 158767, 4919664, 90698841, 3130084360, 81025744811, 3144372342552, 104942286748741, 4582896912897408, 186591555463556895, 9135453970592830816, 437146665470130792497, 23852990622867670807704, 1307029600226135900982835
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (n+k+1)^(k-1) * Stirling2(n-k,k)/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (n+k+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 27 2022
STATUS
approved