login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356791
Emirps p such that R(p) > p and R(p) mod p is prime, where R(p) is the reversal of p.
1
13, 17, 107, 149, 337, 1009, 1069, 1109, 1409, 1499, 1559, 3257, 3347, 3407, 3467, 3527, 3697, 3767, 10009, 10429, 10739, 10859, 10939, 11057, 11149, 11159, 11257, 11497, 11657, 11677, 11717, 11897, 11959, 13759, 13829, 14029, 14479, 14549, 15149, 15299, 15649, 30367, 30557, 31267, 31307, 32257
OFFSET
1,1
COMMENTS
All terms start with digit 1 or 3.
It appears that the only term that does not end with digit 7 or 9 is 13.
LINKS
EXAMPLE
a(3) = 107 is a term because it is prime, its reversal 701 is prime, and 701 mod 107 = 59 is prime.
MAPLE
rev:= proc(n) local K, i;
K:= convert(n, base, 10);
add(K[-i]*10^(i-1), i=1..nops(K))
end proc:
filter:= proc(p) local q;
if not isprime(p) then return false fi;
q:= rev(p);
q > p and isprime(q) and isprime(q mod p)
end proc:
select(filter, [seq(i, i=3..10^5, 2)]);
MATHEMATICA
q[p_] := Module[{r = IntegerReverse[p]}, r > p && PrimeQ[r] && PrimeQ[Mod[r, p]]]; Select[Prime[Range[3500]], q] (* Amiram Eldar, Sep 18 2022 *)
PROG
(Python)
from sympy import isprime
def ok(n):
r = int(str(n)[::-1])
return r > n and isprime(n) and isprime(r) and isprime(r%n)
print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 18 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Sep 18 2022
STATUS
approved