login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Emirps p such that R(p) > p and R(p) mod p is prime, where R(p) is the reversal of p.
1

%I #55 Sep 24 2022 21:51:04

%S 13,17,107,149,337,1009,1069,1109,1409,1499,1559,3257,3347,3407,3467,

%T 3527,3697,3767,10009,10429,10739,10859,10939,11057,11149,11159,11257,

%U 11497,11657,11677,11717,11897,11959,13759,13829,14029,14479,14549,15149,15299,15649,30367,30557,31267,31307,32257

%N Emirps p such that R(p) > p and R(p) mod p is prime, where R(p) is the reversal of p.

%C All terms start with digit 1 or 3.

%C It appears that the only term that does not end with digit 7 or 9 is 13.

%H Robert Israel, <a href="/A356791/b356791.txt">Table of n, a(n) for n = 1..10000</a>

%e a(3) = 107 is a term because it is prime, its reversal 701 is prime, and 701 mod 107 = 59 is prime.

%p rev:= proc(n) local K,i;

%p K:= convert(n,base,10);

%p add(K[-i]*10^(i-1),i=1..nops(K))

%p end proc:

%p filter:= proc(p) local q;

%p if not isprime(p) then return false fi;

%p q:= rev(p);

%p q > p and isprime(q) and isprime(q mod p)

%p end proc:

%p select(filter, [seq(i,i=3..10^5,2)]);

%t q[p_] := Module[{r = IntegerReverse[p]}, r > p && PrimeQ[r] && PrimeQ[Mod[r, p]]]; Select[Prime[Range[3500]], q] (* _Amiram Eldar_, Sep 18 2022 *)

%o (Python)

%o from sympy import isprime

%o def ok(n):

%o r = int(str(n)[::-1])

%o return r > n and isprime(n) and isprime(r) and isprime(r%n)

%o print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Sep 18 2022

%Y Cf. A004086, A006567, A109308.

%K nonn,base

%O 1,1

%A _J. M. Bergot_ and _Robert Israel_, Sep 18 2022