login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356793
Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.
3
1, 6, 5, 6, 1, 8, 4, 6, 5, 3, 9, 5
OFFSET
0,2
COMMENTS
Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2.
Convergence table:
k A001359(k) Sum_{j=1..k} 1/A001359(j)^2
10000000 3285916169 0.165618465394273171950874120818
20000000 7065898967 0.165618465394707600197099741096
30000000 11044807451 0.165618465394836120901019351544
40000000 15151463321 0.165618465394895965582366015390
50000000 19358093939 0.165618465394930089884704869090
60000000 23644223231 0.165618465394951950670948192842
Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - Hugo Pfoertner, Sep 28 2022
LINKS
Jeffrey P.S. Lay, Sign changes in Mertens' first and second theorems, arXiv:1505.03589 [math.NT], 2015.
Mark B. Villarino, Mertens' Proof of Mertens' Theorem, arXiv:math/0504289 [math.HO], 2005.
Marek Wolf, Generalized Brun's constants, IFTUWr 910/97 (1998), 1-15.
Marek Wolf, Some heuristics on the gaps between consecutive primes, arXiv:1102.0481 [math.NT]. 2011.
EXAMPLE
0.165618465395...
KEYWORD
nonn,cons,hard,more
AUTHOR
Artur Jasinski, Sep 04 2022
EXTENSIONS
Data extended to ...3, 9, 5 by Hugo Pfoertner, Sep 28 2022
STATUS
approved