login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356795
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)^2).
4
1, 0, 2, 3, 68, 330, 7674, 73080, 1883440, 28281960, 818625960, 17120406600, 557507325000, 15014517495120, 548643259812816, 18056683281775320, 736892260092195840, 28579282973977498560, 1295028345251832359616, 57666859088090317591680
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (2*k+1)^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
E.g.f.: A(x) = Sum_{k>=0} (2*k+1)^(k-1) * (-x * log(1-x))^k / k!.
E.g.f.: A(x) = exp( -LambertW(2 * x * log(1-x))/2 ).
E.g.f.: A(x) = ( LambertW(2 * x * log(1-x))/(2 * x * log(1-x)) )^(1/2).
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (2*k+1)^(k-1)*(-x*log(1-x))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*x*log(1-x))/2)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(2*x*log(1-x))/(2*x*log(1-x)))^(1/2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 28 2022
STATUS
approved