login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360817
Expansion of Sum_{k>=0} (k*x)^(3*k) / (1 - k*x)^(k+1).
2
1, 0, 0, 1, 2, 3, 68, 389, 1542, 24810, 251564, 1814487, 27520734, 391640548, 4295115396, 69305652406, 1221344986380, 18207710383335, 329699350020676, 6759819628538561, 126950556666301050, 2624697847966227077, 60825028694289947940, 1365568620213461601924
OFFSET
0,5
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/3)} k^n * binomial(n-2*k,k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^(3*k)/(1-k*x)^(k+1)))
(PARI) a(n) = sum(k=0, n\3, k^n*binomial(n-2*k, k));
CROSSREFS
Cf. A360815.
Sequence in context: A365504 A041249 A356795 * A184949 A132598 A257173
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved