login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360814
Expansion of Sum_{k>=0} x^(2*k) / (1 - k*x)^(k+1).
1
1, 0, 1, 2, 4, 10, 30, 98, 338, 1240, 4877, 20496, 91213, 426678, 2090081, 10702438, 57193760, 318283388, 1840036058, 11026424446, 68370955450, 438039068726, 2896018310881, 19733372875632, 138418266287689, 998363508783924, 7396739279819185, 56239695790595786
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(n-k,k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k*x)^(k+1)))
(PARI) a(n) = sum(k=0, n\2, k^(n-2*k)*binomial(n-k, k));
CROSSREFS
Cf. A360708.
Sequence in context: A003289 A087161 A372018 * A337488 A328358 A007558
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved