login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372018
G.f. A(x) satisfies A(x) = ( 1 + 4*x*A(x)/(1 - x*A(x)) )^(1/2).
4
1, 2, 4, 10, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218, 1048717979424, 4327273358250, 17903826642780, 74260741616514, 308724721176676
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).
D-finite with recurrence n*(n+1)*(n-2)*a(n) -6*(n-2)*(3*n^2-6*n+1)*a(n-2) -27*n*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
Conjecture: a(2n+1) = 2*A371364(). - R. J. Mathar, Apr 22 2024
MAPLE
A372018 := proc(n)
add(4^k*binomial((n+1)/2, k)*binomial(n-1, k-1), k=0..n) ;
%/(n+1) ;
end proc:
seq(A372018(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
PROG
(PARI) a(n) = sum(k=0, n, 4^k*binomial(n/2+1/2, k)*binomial(n-1, n-k))/(n+1);
CROSSREFS
Sequence in context: A149836 A003289 A087161 * A360814 A337488 A328358
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 15 2024
STATUS
approved