login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372019
G.f. A(x) satisfies A(x) = ( 1 + 9*x*A(x)/(1 - x*A(x)) )^(1/3).
3
1, 3, 3, 3, 30, 57, 84, 867, 1893, 3162, 33132, 76953, 136812, 1446204, 3478764, 6420387, 68260134, 167946159, 317782524, 3392340186, 8479140510, 16332164868, 174873206424, 442212416121, 863222622780, 9264327739716, 23637757714788, 46624054987452
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 9^k * binomial(n/3+1/3,k) * binomial(n-1,n-k).
D-finite with recurrence n*(n-1)*(n+1)*a(n) -8*(2*n-5)*(8*n^2-40*n+57)*a(n-3) +4096*(n-5)*(n-6)*(n-4)*a(n-6)=0. - R. J. Mathar, Apr 22 2024
MAPLE
A371019 := proc(n)
add(9^k*binomial((n+1)/3, k)*binomial(n-1, k-1), k=0..n) ;
%/(n+1) ;
end proc:
seq(A371019(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
PROG
(PARI) a(n) = sum(k=0, n, 9^k*binomial(n/3+1/3, k)*binomial(n-1, n-k))/(n+1);
CROSSREFS
Cf. A372004.
Sequence in context: A033874 A122092 A230495 * A369081 A346909 A369232
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 15 2024
STATUS
approved