login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369232
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^3)^3 ).
2
1, 0, 0, 3, 3, 3, 33, 72, 120, 583, 1731, 3888, 13759, 44775, 119793, 381220, 1250328, 3682284, 11455153, 37174428, 114947724, 359381467, 1157319135, 3663615552, 11581104121, 37220909916, 119192219799, 380580143110, 1225279436706, 3948906772872, 12705801908002
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(n-2*k-1,n-3*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1-x+x^3)^3)/x)
(PARI) a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u-t+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A369081.
Sequence in context: A372019 A369081 A346909 * A369014 A025549 A124013
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 17 2024
STATUS
approved