login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371364
Expansion of (1/x) * Series_Reversion( x * (1-4*x)^2 / (1-3*x) ).
4
1, 5, 49, 597, 8129, 118469, 1807665, 28512213, 461141761, 7606159365, 127454706609, 2163636679125, 37130370808257, 643099703566277, 11227141735655345, 197356077159062613, 3490230884900117505, 62054912214781757957, 1108568475427756051761
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 3^(n-k) * binomial(2*n+k+1,k) * binomial(2*n,n-k).
D-finite with recurrence (n+1)*(2*n+1)*a(n) +3*(-6*n^2-9*n+2)*a(n-1) -27*(7*n-9)*(2*n-3)*a(n-2) -243*(n-2)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Apr 22 2024
MAPLE
A371364 := proc(n)
add(3^(n-k)*binomial(2*n+k+1, k)*binomial(2*n, n-k), k=0..n) ;
%/(n+1) ;
end proc:
seq(A371364(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^2/(1-3*x))/x)
(PARI) a(n) = sum(k=0, n, 3^(n-k)*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);
CROSSREFS
Sequence in context: A378402 A370097 A274671 * A112241 A216483 A243945
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2024
STATUS
approved