The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A371361 The first of two consecutive primes p, q such that p, q and p + q are all pandigital. 1
 10234568791, 10234685971, 10234756849, 10234786589, 10234865779, 10235678449, 10237845649, 10243756981, 10245836789, 10245936781, 10245968371, 10247658389, 10247658923, 10247685893, 10248357659, 10248756893, 10256734879, 10256839447, 10256839477, 10257384679, 10257486913, 10258367429, 10258367489 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The first case where a(n) and a(n+1) are consecutive primes is n = 18. Thus p = a(18) = 10256839447, q = a(19) = 10256839477 and r = 10256839487 are three consecutive primes with p, q, r, p + q and q + r all pandigital. In addition, p + r = 20513678934 ia pandigital. LINKS Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..100 from Robert Israel) EXAMPLE a(3) = 10234756849 is a term because it is prime and pandigital, the next prime 10234756859 is also pandigital, and 10234756849 + 10234756859 = 20469513708 is pandigital. MAPLE ispd:= proc(n) convert(convert(n, base, 10), set) = {\$0..9} end proc: q:=nextprime(10^10): qgood:= false: Res:= NULL: count:= 0: while count < 25 do p:= q; pgood:= qgood; q:= nextprime(p); qgood:= ispd(q); if pgood and qgood and ispd(p+q) then Res:= Res, p; count:= count+1; fi; od: Res; CROSSREFS Cf. A171102, A050288 Sequence in context: A098143 A276590 A259152 * A135047 A017541 A357609 Adjacent sequences: A371358 A371359 A371360 * A371362 A371363 A371364 KEYWORD nonn,base AUTHOR Robert Israel, Mar 19 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 17:35 EDT 2024. Contains 375173 sequences. (Running on oeis4.)