|
|
A242303
|
|
Decimal expansion of C(4), where C(x) = -Sum_{k>=1} (-1)^k/prime(k)^x.
|
|
7
|
|
|
5, 1, 3, 7, 8, 3, 0, 5, 1, 6, 6, 7, 4, 8, 2, 8, 2, 5, 7, 5, 2, 0, 0, 0, 7, 0, 5, 6, 4, 7, 3, 1, 3, 6, 9, 6, 9, 2, 8, 1, 8, 3, 9, 9, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,1
|
|
COMMENTS
|
The alternating series of reciprocal powers of prime numbers converges for any x > 0 (absolutely so if x > 1) but is hard to compute.
The next digits of C(4), after ...20007, seem to converge to a(24)=0, a(25)= 5.
a(44), the next digit after ...83994, appears to be a 2. - Jon E. Schoenfield, Dec 30 2017
|
|
LINKS
|
Table of n, a(n) for n=-1..43.
S. Sykora, PARI/GP scripts for primes-related functions, see function AltSum1DivPrimePwr(x,eps), with instructions
|
|
EXAMPLE
|
0.0513783051667482825752000705647313696928183994...
|
|
MATHEMATICA
|
next = 0; ndigits = 13; epsilon = 10^-(2 ndigits); k = 1;
While[test = 1/Prime[k + 1]^4 - 1/Prime[k]^4; -test > epsilon,
next = next + test; k += 2];
First[RealDigits[-next, 10, ndigits]] (* Robert Price, Sep 07 2019 *)
|
|
PROG
|
(PARI) See Sykora link.
|
|
CROSSREFS
|
Cf. A078437 (x=1), A242301 (x=2), A242302 (x=3), A242304 (x=5).
Cf. A085964.
Sequence in context: A327965 A094136 A051996 * A214803 A225984 A074048
Adjacent sequences: A242300 A242301 A242302 * A242304 A242305 A242306
|
|
KEYWORD
|
nonn,cons,hard,more
|
|
AUTHOR
|
Stanislav Sykora, May 14 2014
|
|
EXTENSIONS
|
a(24)-a(43) from Jon E. Schoenfield, Dec 30 2017
|
|
STATUS
|
approved
|
|
|
|