login
A242303
Decimal expansion of C(4), where C(x) = -Sum_{k>=1} (-1)^k/prime(k)^x.
9
5, 1, 3, 7, 8, 3, 0, 5, 1, 6, 6, 7, 4, 8, 2, 8, 2, 5, 7, 5, 2, 0, 0, 0, 7
OFFSET
-1,1
COMMENTS
The alternating series of reciprocal powers of prime numbers converges for any x > 0 (absolutely so if x > 1) but is hard to compute.
The next digits of C(4), after ...20007, seem to converge to a(24)=0, a(25)= 5.
LINKS
Stanislav Sykora, PARI/GP scripts for primes-related functions, see function AltSum1DivPrimePwr(x,eps), with instructions.
EXAMPLE
0.05137830516674828257520007...
MATHEMATICA
next = 0; ndigits = 13; epsilon = 10^-(2 ndigits); k = 1;
While[test = 1/Prime[k + 1]^4 - 1/Prime[k]^4; -test > epsilon,
next = next + test; k += 2];
First[RealDigits[-next, 10, ndigits]] (* Robert Price, Sep 07 2019 *)
PROG
(PARI) See Sykora link.
CROSSREFS
Cf. A078437 (x=1), A242301 (x=2), A242302 (x=3), A242304 (x=5).
Cf. A085964.
Sequence in context: A327965 A094136 A051996 * A214803 A225984 A074048
KEYWORD
nonn,cons,hard,more
AUTHOR
Stanislav Sykora, May 14 2014
STATUS
approved