login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.
3

%I #65 Sep 29 2022 22:05:29

%S 1,6,5,6,1,8,4,6,5,3,9,5

%N Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.

%C Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2.

%C Convergence table:

%C k A001359(k) Sum_{j=1..k} 1/A001359(j)^2

%C 10000000 3285916169 0.165618465394273171950874120818

%C 20000000 7065898967 0.165618465394707600197099741096

%C 30000000 11044807451 0.165618465394836120901019351544

%C 40000000 15151463321 0.165618465394895965582366015390

%C 50000000 19358093939 0.165618465394930089884704869090

%C 60000000 23644223231 0.165618465394951950670948192842

%C Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - _Hugo Pfoertner_, Sep 28 2022

%H Jeffrey P.S. Lay, <a href="https://arxiv.org/abs/1505.03589">Sign changes in Mertens' first and second theorems</a>, arXiv:1505.03589 [math.NT], 2015.

%H Mark B. Villarino, <a href="https://arxiv.org/abs/math/0504289">Mertens' Proof of Mertens' Theorem</a>, arXiv:math/0504289 [math.HO], 2005.

%H Marek Wolf, <a href="https://www.researchgate.net/publication/2346256_Generalized_Brun%27s_constants">Generalized Brun's constants</a>, IFTUWr 910/97 (1998), 1-15.

%H Marek Wolf, <a href="https://arxiv.org/abs/1102.0481">Some heuristics on the gaps between consecutive primes</a>, arXiv:1102.0481 [math.NT]. 2011.

%e 0.165618465395...

%Y Cf. A006512, A065421, A077800, A078437, A085548, A096247, A160910, A194098, A209328, A209329, A242301, A242302, A242303, A242304, A306539, A342714.

%Y Cf. A347278.

%K nonn,cons,hard,more

%O 0,2

%A _Artur Jasinski_, Sep 04 2022

%E Data extended to ...3, 9, 5 by _Hugo Pfoertner_, Sep 28 2022