OFFSET
0,3
FORMULA
a(n) ~ sqrt(s*(1 - r^2*s/(1 + r*s))) * n^(n-1) / (exp(n) * r^(n + 1/2)), where r = 0.4599551063707173872728335298048828687860291021728... is the root of the equation r - LambertW(1/r) - 2*log(r) = 1/LambertW(1/r) and s = LambertW(1/r)/r = 1.938208283387405345404104769972407921289092368509... - Vaclav Kotesovec, Nov 22 2021
a(n) = n! * Sum_{k=0..floor(n/2)} (n-k+1)^(k-1) * Stirling2(n-k,k)/(n-k)!. - Seiichi Manyama, Aug 27 2022
MAPLE
a:= n-> n!*coeff(series(RootOf(A=exp(x*exp(x*A)-x), A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 22 2021
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = Exp[(E^(x*A[x]) - 1)*x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
PROG
(PARI) my(A=1, n=22); for(i=1, n, A=exp((exp(x*A)-1)*(x+x*O(x^n)))); Vec(serlaplace(A))
(PARI) a(n) = n!*sum(k=0, n\2, (n-k+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!); \\ Seiichi Manyama, Aug 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 22 2021
STATUS
approved