login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349560
E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1) * x.
8
1, 0, 2, 3, 40, 245, 2976, 35287, 524560, 8790777, 165530800, 3493679651, 80812685064, 2049413147509, 56294089065592, 1668771901644135, 53057068616526496, 1801519375618579313, 65063987978980974048, 2490449984485154892235, 100716775979173952155480
OFFSET
0,3
FORMULA
a(n) ~ sqrt(s*(1 - r^2*s/(1 + r*s))) * n^(n-1) / (exp(n) * r^(n + 1/2)), where r = 0.4599551063707173872728335298048828687860291021728... is the root of the equation r - LambertW(1/r) - 2*log(r) = 1/LambertW(1/r) and s = LambertW(1/r)/r = 1.938208283387405345404104769972407921289092368509... - Vaclav Kotesovec, Nov 22 2021
a(n) = n! * Sum_{k=0..floor(n/2)} (n-k+1)^(k-1) * Stirling2(n-k,k)/(n-k)!. - Seiichi Manyama, Aug 27 2022
MAPLE
a:= n-> n!*coeff(series(RootOf(A=exp(x*exp(x*A)-x), A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 22 2021
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = Exp[(E^(x*A[x]) - 1)*x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
PROG
(PARI) my(A=1, n=22); for(i=1, n, A=exp((exp(x*A)-1)*(x+x*O(x^n)))); Vec(serlaplace(A))
(PARI) a(n) = n!*sum(k=0, n\2, (n-k+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!); \\ Seiichi Manyama, Aug 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 22 2021
STATUS
approved