login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097170
Total number of minimal vertex covers among labeled trees on n nodes.
6
1, 2, 3, 40, 185, 3936, 35917, 978160, 14301513, 464105440, 9648558161, 361181788584, 9884595572293, 419174374377136, 14317833123918885, 679698565575210976, 27884513269105178033, 1468696946887669701312
OFFSET
1,2
LINKS
S. Coulomb and M. Bauer, On vertex covers, matchings and random trees, arXiv:math/0407456 [math.CO], 2004.
FORMULA
Coulomb and Bauer give a g.f.
MAPLE
umax := 20 : u := array(0..umax) : T := proc(z) local resul, n ; global umax, u ; resul :=0 ; for n from 1 to umax do resul := resul +n^(n-1)/n!*z^n ; od : RETURN(taylor(resul, x=0, umax+1)) ; end: U := proc() global umax, u ; local resul, n ; resul :=0 ; for n from 0 to umax do resul := resul+u[n]*x^n ; od: end: expU := proc() global umax, u ; taylor(exp(U()), x=0, umax+1) ; end: xUexpU := proc() global umax, u ; taylor(x*U()*expU(), x=0, umax+1) ; end: exexpU := proc() global umax, u ; taylor(exp(x*expU())-1, x=0, umax+1) ; end: x2e2U := taylor((x*expU())^2, x=0, umax+1) ; A := expand(taylor(xUexpU()-T(x2e2U)*exexpU(), x=0, umax+1)) ; for n from 0 to umax do u[n] := solve(coeff(A, x, n+1), u[n]) ; od ; F := proc() global umax, u ; taylor((1-U())*x*expU()-U()*T(x2e2U)+U()-U()^2/2, x=0, umax+1) ; end: egf := F() ; for n from 0 to umax-1 do n!*coeff(egf, x, n) ; od; # R. J. Mathar, Sep 14 2006
MATHEMATICA
uMax = 20; Clear[u]; u[0] = u[1] = 0; u[2] = 1;
T[x_] := Sum[n^(n - 1)/n!*x^n , {n, 1, uMax}];
U[] = Sum[u[n]*x^n, {n, 0, uMax}];
ExpU[] = Series[Exp[U[]], {x, 0, uMax + 1}];
xUExpU[] = Series[x*U[]*ExpU[], {x, 0, uMax + 1}];
exExpU[] = Series[Exp[x*ExpU[]] - 1, {x, 0, uMax + 1}];
x2e2U = Series[(x*ExpU[])^2, {x, 0, uMax + 1}];
A = Series[xUExpU[] - T[x2e2U]*exExpU[], {x, 0, uMax + 1}] // CoefficientList[#, x]&;
sol = Solve[Thread[A == 0]][[1]];
egf = Series[(1 - U[])*x*ExpU[] - U[]*T[x2e2U] + U[] - U[]^2/2 /. sol, {x, 0, uMax + 1}];
Most[CoefficientList[egf, x]]*Range[0, uMax]! // Rest (* Jean-François Alcover, Dec 11 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jul 30 2004
EXTENSIONS
More terms from R. J. Mathar, Sep 14 2006
STATUS
approved