login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097170 Total number of minimal vertex covers among labeled trees on n nodes. 6
1, 2, 3, 40, 185, 3936, 35917, 978160, 14301513, 464105440, 9648558161, 361181788584, 9884595572293, 419174374377136, 14317833123918885, 679698565575210976, 27884513269105178033, 1468696946887669701312 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..18.

S. Coulomb and M. Bauer, On vertex covers, matchings and random trees, arXiv:math/0407456 [math.CO], 2004.

FORMULA

Coulomb and Bauer give a g.f.

MAPLE

umax := 20 : u := array(0..umax) : T := proc(z) local resul, n ; global umax, u ; resul :=0 ; for n from 1 to umax do resul := resul +n^(n-1)/n!*z^n ; od : RETURN(taylor(resul, x=0, umax+1)) ; end: U := proc() global umax, u ; local resul, n ; resul :=0 ; for n from 0 to umax do resul := resul+u[n]*x^n ; od: end: expU := proc() global umax, u ; taylor(exp(U()), x=0, umax+1) ; end: xUexpU := proc() global umax, u ; taylor(x*U()*expU(), x=0, umax+1) ; end: exexpU := proc() global umax, u ; taylor(exp(x*expU())-1, x=0, umax+1) ; end: x2e2U := taylor((x*expU())^2, x=0, umax+1) ; A := expand(taylor(xUexpU()-T(x2e2U)*exexpU(), x=0, umax+1)) ; for n from 0 to umax do u[n] := solve(coeff(A, x, n+1), u[n]) ; od ; F := proc() global umax, u ; taylor((1-U())*x*expU()-U()*T(x2e2U)+U()-U()^2/2, x=0, umax+1) ; end: egf := F() ; for n from 0 to umax-1 do n!*coeff(egf, x, n) ; od; # R. J. Mathar, Sep 14 2006

MATHEMATICA

uMax = 20; Clear[u]; u[0] = u[1] = 0; u[2] = 1;

T[x_] := Sum[n^(n - 1)/n!*x^n , {n, 1, uMax}];

U[] = Sum[u[n]*x^n, {n, 0, uMax}];

ExpU[] = Series[Exp[U[]], {x, 0, uMax + 1}];

xUExpU[] = Series[x*U[]*ExpU[], {x, 0, uMax + 1}];

exExpU[] = Series[Exp[x*ExpU[]] - 1, {x, 0, uMax + 1}];

x2e2U = Series[(x*ExpU[])^2, {x, 0, uMax + 1}];

A = Series[xUExpU[] - T[x2e2U]*exExpU[], {x, 0, uMax + 1}] // CoefficientList[#, x]&;

sol = Solve[Thread[A == 0]][[1]];

egf = Series[(1 - U[])*x*ExpU[] - U[]*T[x2e2U] + U[] - U[]^2/2 /. sol, {x, 0, uMax + 1}];

Most[CoefficientList[egf, x]]*Range[0, uMax]! // Rest (* Jean-Fran├žois Alcover, Dec 11 2017, translated from Maple *)

CROSSREFS

Cf. A097171, A097172, A097173, A097174, A000169, A000272.

Sequence in context: A080393 A111683 A088984 * A231797 A176366 A157132

Adjacent sequences:  A097167 A097168 A097169 * A097171 A097172 A097173

KEYWORD

nonn

AUTHOR

Ralf Stephan, Jul 30 2004

EXTENSIONS

More terms from R. J. Mathar, Sep 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 11:03 EDT 2018. Contains 316224 sequences. (Running on oeis4.)