OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..360
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+k+1)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt((s-1)*s^3 / (1 + r*(2*s - 3)*s - r^2*(s-1)*s^2)) * n^(n-1) / (exp(n) * r^(n -1/2)), where r = 0.2202409288542107090687589144963703329896230236509... and s = 1.7315644042495989781932730410872588555151921253414... are roots of the system of equations s = s/exp(r*s) + log(s), (s-1)/s - (1 - r*s)/exp(r*s) = 0. - Vaclav Kotesovec, Nov 22 2021
MATHEMATICA
a[n_] := Sum[(-1)^(n - k) * (n + k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 22 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(n+k+1)^(k-1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 21 2021
STATUS
approved