login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349558
E.g.f. satisfies: log(A(x)) = (1 - exp(-x*A(x))) * A(x).
4
1, 1, 4, 32, 393, 6547, 138046, 3525853, 105832964, 3651748332, 142429413387, 6196895235709, 297571887174040, 15632879134292045, 891910713837242092, 54919409605089141532, 3630105859259972654905, 256374187841461047791587
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+k+1)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt((s-1)*s^3 / (1 + r*(2*s - 3)*s - r^2*(s-1)*s^2)) * n^(n-1) / (exp(n) * r^(n -1/2)), where r = 0.2202409288542107090687589144963703329896230236509... and s = 1.7315644042495989781932730410872588555151921253414... are roots of the system of equations s = s/exp(r*s) + log(s), (s-1)/s - (1 - r*s)/exp(r*s) = 0. - Vaclav Kotesovec, Nov 22 2021
MATHEMATICA
a[n_] := Sum[(-1)^(n - k) * (n + k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 22 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(n+k+1)^(k-1)*stirling(n, k, 2));
CROSSREFS
Sequence in context: A195193 A377737 A203435 * A005263 A325574 A373027
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 21 2021
STATUS
approved