login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203435
Number of partitions of {1,2,...,4n} into n 4-element subsets having the same sum.
3
1, 1, 4, 32, 392, 6883, 171088, 5661874, 242038179, 13147317481
OFFSET
0,3
COMMENTS
The element sum of each subset is 8n+2. The larger terms were computed with Knuth's dancing links algorithm.
EXAMPLE
a(1) = 1: {1,2,3,4}.
a(2) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.
MAPLE
b:= proc() option remember; local i, j, t, m; m:= args[nargs]; if args[1]=0 then `if`(nargs=2, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j]<m, 0, b(sort([seq(args[i] -`if`(i=j, m+1/97, 0), i=1..nargs-1)])[], m-1)), j=1..nargs-1) fi end:
a:= n-> `if`(n=0, 1, b(((8*n+2)+4/97) $n, 4*n)/n!): seq(a(n), n=0..6);
MATHEMATICA
b[l_] := b[l] = Module[{nl = Length[l], k = l[[-1]], m = l[[-2]]}, Which[l[[1]] == 0, If[nl == 3, 1, b[l[[2 ;; nl]]]], l[[1]] < 1, 0, True, Sum[If[l[[j]] < m, 0, b[Join[Sort[Table[l[[i]] - If[i == j, m + 1/97, 0], {i, 1, nl - 2}]], {m - 1, k}]]], {j, 1, nl - 2}]]];
a[n_] := If[n == 0, 1, b[Join[Array[8*n + 2 + 4/97& , n], {4*n, 4}]]/n!];
Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Jun 03 2018, adapted from Maple *)
CROSSREFS
Column k=4 of A203986.
Sequence in context: A007763 A195193 A377737 * A349558 A005263 A325574
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Jan 01 2012
STATUS
approved