The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203435 Number of partitions of {1,2,...,4n} into n 4-element subsets having the same sum. 3
 1, 1, 4, 32, 392, 6883, 171088, 5661874, 242038179, 13147317481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The element sum of each subset is 8n+2.  The larger terms were computed with Knuth's dancing links algorithm. LINKS Wikipedia, Dancing Links EXAMPLE a(1) = 1: {1,2,3,4}. a(2) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}. MAPLE b:= proc() option remember; local i, j, t, m; m:= args[nargs]; if args[1]=0 then `if`(nargs=2, 1, b(args[t] \$t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] `if`(n=0, 1, b(((8*n+2)+4/97) \$n, 4*n)/n!): seq(a(n), n=0..6); MATHEMATICA b[l_] := b[l] = Module[{nl = Length[l], k = l[[-1]], m = l[[-2]]}, Which[l[[1]] == 0, If[nl == 3, 1, b[l[[2 ;; nl]]]], l[[1]] < 1, 0, True, Sum[If[l[[j]] < m, 0, b[Join[Sort[Table[l[[i]] - If[i == j, m + 1/97, 0], {i, 1, nl - 2}]], {m - 1, k}]]], {j, 1, nl - 2}]]]; a[n_] := If[n == 0, 1, b[Join[Array[8*n + 2 + 4/97& , n], {4*n, 4}]]/n!]; Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Jun 03 2018, adapted from Maple *) CROSSREFS Column k=4 of A203986. Cf. A104185, A108235, A203017, A264813. Sequence in context: A222412 A007763 A195193 * A005263 A325574 A113131 Adjacent sequences:  A203432 A203433 A203434 * A203436 A203437 A203438 KEYWORD nonn,more AUTHOR Alois P. Heinz, Jan 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 05:42 EDT 2020. Contains 336422 sequences. (Running on oeis4.)