login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203986 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of {1,2,...,k*n} into n k-element subsets having the same sum. 5
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 4, 2, 1, 0, 1, 1, 1, 0, 32, 0, 1, 0, 1, 1, 1, 29, 305, 392, 11, 1, 0, 1, 1, 1, 0, 4331, 0, 6883, 0, 1, 0, 1, 1, 1, 263, 63261, 2097719, 3245664, 171088, 84, 1, 0, 1, 1, 1, 0, 1025113, 0, 2549091482, 0, 5661874, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,24

COMMENTS

A(n,k) = 0 if n>1 and k>0 and (k=1 or k*(n-1) mod 2 = 1).

The element sum of each subset is k*(k*n+1)/2.

LINKS

Table of n, a(n) for n=0..77.

Wikipedia, Partition of a set

EXAMPLE

A(0,0) = 1.

A(1,1) = 1: {1}.

A(2,2) = 1: {1,4}, {2,3}.

A(3,3) = 2: {1,5,9}, {2,6,7}, {3,4,8}; {1,6,8}, {2,4,9}, {3,5,7}.

A(4,2) = 1: {1,8}, {2,7}, {3,6}, {4,5}.

A(2,4) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.

Square array A(n,k) begins:

  1, 1, 1,  1,    1,       1,          1, ...

  1, 1, 1,  1,    1,       1,          1, ...

  1, 0, 1,  0,    4,       0,         29, ...

  1, 0, 1,  2,   32,     305,       4331, ...

  1, 0, 1,  0,  392,       0,    2097719, ...

  1, 0, 1, 11, 6883, 3245664, 2549091482, ...

MAPLE

b:= proc() option remember; local i, j, t, k, m; m:= args[nargs-1]; k:= args[nargs]; if args[1]=0 then `if`(nargs=3, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j]<m, 0, b(sort([seq(args[i] -`if`(i=j, m+1/97, 0), i=1..nargs-2)])[], m-1, k)), j=1..nargs-2) fi end:

A:= (n, k)-> `if`(n=0 or k=0, 1, b((k*(n*k+1)/2 +k/97) $n, k*n, k)/n!):

seq(seq(A(n, d-n), n=0..d), d=0..10);

MATHEMATICA

b[args_List] := b[args] = Module[{nargs = Length[args], k = args[[-1]], m = args[[-2]]}, Which[args[[1]] == 0, If[nargs == 3, 1, b[args[[2 ;; nargs]]]], args[[1]] < 1, 0, True, Sum[If[args[[j]] < m, 0, b[Join[Sort[Table[args[[i]] - If[i == j, m + 1/97, 0], {i, 1, nargs - 2}]], {m - 1, k}]]], {j, 1, nargs - 2}] ]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[Join[Array[(k*(n*k + 1)/2 + k/97) &, n], {k*n, k}]]/n!]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-Fran├žois Alcover, Jan 21 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A168238 (bisection of row n=2), A203017 (row n=3), A104185 (bisection of column k=3), A203435 (column k=4).

Main diagonal gives A321230.

Sequence in context: A247092 A177715 A164789 * A204690 A309784 A331160

Adjacent sequences:  A203983 A203984 A203985 * A203987 A203988 A203989

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jan 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 18:04 EDT 2021. Contains 347716 sequences. (Running on oeis4.)