login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203986
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of {1,2,...,k*n} into n k-element subsets having the same sum.
5
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 4, 2, 1, 0, 1, 1, 1, 0, 32, 0, 1, 0, 1, 1, 1, 29, 305, 392, 11, 1, 0, 1, 1, 1, 0, 4331, 0, 6883, 0, 1, 0, 1, 1, 1, 263, 63261, 2097719, 3245664, 171088, 84, 1, 0, 1, 1, 1, 0, 1025113, 0, 2549091482, 0, 5661874, 0, 1, 0, 1
OFFSET
0,24
COMMENTS
A(n,k) = 0 if n>1 and k>0 and (k=1 or k*(n-1) mod 2 = 1).
The element sum of each subset is k*(k*n+1)/2.
EXAMPLE
A(0,0) = 1.
A(1,1) = 1: {1}.
A(2,2) = 1: {1,4}, {2,3}.
A(3,3) = 2: {1,5,9}, {2,6,7}, {3,4,8}; {1,6,8}, {2,4,9}, {3,5,7}.
A(4,2) = 1: {1,8}, {2,7}, {3,6}, {4,5}.
A(2,4) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 0, 4, 0, 29, ...
1, 0, 1, 2, 32, 305, 4331, ...
1, 0, 1, 0, 392, 0, 2097719, ...
1, 0, 1, 11, 6883, 3245664, 2549091482, ...
MAPLE
b:= proc() option remember; local i, j, t, k, m; m:= args[nargs-1]; k:= args[nargs]; if args[1]=0 then `if`(nargs=3, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j]<m, 0, b(sort([seq(args[i] -`if`(i=j, m+1/97, 0), i=1..nargs-2)])[], m-1, k)), j=1..nargs-2) fi end:
A:= (n, k)-> `if`(n=0 or k=0, 1, b((k*(n*k+1)/2 +k/97) $n, k*n, k)/n!):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[args_List] := b[args] = Module[{nargs = Length[args], k = args[[-1]], m = args[[-2]]}, Which[args[[1]] == 0, If[nargs == 3, 1, b[args[[2 ;; nargs]]]], args[[1]] < 1, 0, True, Sum[If[args[[j]] < m, 0, b[Join[Sort[Table[args[[i]] - If[i == j, m + 1/97, 0], {i, 1, nargs - 2}]], {m - 1, k}]]], {j, 1, nargs - 2}] ]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[Join[Array[(k*(n*k + 1)/2 + k/97) &, n], {k*n, k}]]/n!]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A168238 (bisection of row n=2), A203017 (row n=3), A104185 (bisection of column k=3), A203435 (column k=4).
Main diagonal gives A321230.
Sequence in context: A247092 A177715 A164789 * A204690 A309784 A331160
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 09 2012
STATUS
approved