login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203984
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order
7
6, 24, 24, 96, 144, 96, 384, 864, 864, 384, 1536, 5184, 7776, 5184, 1536, 6144, 31104, 69984, 69984, 31104, 6144, 24576, 186624, 629856, 956448, 629856, 186624, 24576, 98304, 1119744, 5668704, 13071456, 13071456, 5668704, 1119744, 98304, 393216
OFFSET
1,1
COMMENTS
Table starts
.....6......24........96.........384..........1536............6144
....24.....144.......864........5184.........31104..........186624
....96.....864......7776.......69984........629856.........5668704
...384....5184.....69984......956448......13071456.......178855776
..1536...31104....629856....13071456.....271918944......5671161216
..6144..186624...5668704...178855776....5671161216....180709558848
.24576.1119744..51018336..2447270496..118333620576...5764846339584
.98304.6718464.459165024.33489653472.2469841766784.184042295652096
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 6*4^(n-1)
k=2: a(n) = 4*6^n
k=3: a(n) = 96*9^(n-1)
k=4: a(n) = 15*a(n-1) -270*a(n-3) +324*a(n-4)
k=5: a(n) = 25*a(n-1) -45*a(n-2) -963*a(n-3) +2025*a(n-4) +3645*a(n-5) -6561*a(n-6)
k=6: (order 15 recurrence)
k=7: (order 45 recurrence)
EXAMPLE
Some solutions for n=4 k=3
..0..0..0..0....0..0..0..0....0..0..1..1....0..1..0..0....0..1..2..1
..1..1..1..2....1..2..1..2....1..2..2..0....2..2..2..1....2..1..2..0
..0..0..0..2....1..2..1..0....0..0..1..1....0..0..0..0....2..0..2..1
..1..1..1..1....0..2..1..2....1..2..2..0....1..1..1..1....1..1..2..1
..0..2..2..2....1..2..1..2....1..0..1..1....2..2..2..2....2..0..0..1
CROSSREFS
Column 1 is A002023(n-1)
Column 2 is A067411(n+1)
Sequence in context: A223751 A228745 A049319 * A237836 A231324 A274557
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 09 2012
STATUS
approved