login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A117544
Least k such that Phi(n,k), the n-th cyclotomic polynomial evaluated at k, is prime.
7
3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 6, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 2, 2, 14, 3, 1, 2, 10, 2, 1, 2, 1, 25, 11, 2, 1, 5, 1, 6, 30, 11, 1, 7, 7, 2, 5, 7, 1, 3, 1, 2, 3, 1, 2, 9, 1, 85, 2, 3, 1, 3, 1, 16, 59, 7, 2, 2, 1, 2, 1, 61, 1, 7, 2, 2, 8, 5, 1, 2, 11, 4, 2, 6, 44, 4, 1, 2, 63
OFFSET
1,1
COMMENTS
Note that a(n)=1 iff n is a power of a prime.
Because every cyclotomic polynomial is irreducible, it is expected that a(n) exists for all n.
Note that if p=Phi(n,k) is prime and n>1, then p==1 (mod k). - Corrected by Robert Israel, Apr 22 2019
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1000 from T. D. Noe)
FORMULA
Phi(n, a(n)) = A307687(n). - Robert Israel, Apr 22 2019
MAPLE
f:= proc(n) local C, x, k;
C:= unapply(numtheory:-cyclotomic(n, x), x);
for k from 1 do if isprime(C(k)) then return k fi od
end proc:
map(f, [$1..200]); # Robert Israel, Apr 22 2019
MATHEMATICA
Table[k=1; While[ !PrimeQ[Cyclotomic[n, k]], k++ ]; k, {n, 100}]
PROG
(PARI) a(n) = my(k=1); while (!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Apr 22 2019
CROSSREFS
Cf. A085398, A117545 (least k such that Phi(k, n) is prime), A307687.
Sequence in context: A023593 A353755 A353784 * A030393 A328391 A109393
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 28 2006
STATUS
approved