The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296434 Decimal expansion of ratio-sum for A296292; see Comments. 25
 8, 0, 1, 2, 9, 6, 8, 9, 0, 3, 0, 9, 5, 6, 6, 1, 4, 7, 2, 5, 1, 5, 5, 4, 1, 4, 9, 9, 4, 1, 6, 3, 7, 7, 2, 7, 3, 1, 9, 8, 3, 2, 6, 4, 4, 4, 4, 1, 6, 2, 6, 7, 6, 9, 3, 1, 5, 1, 4, 1, 5, 0, 8, 2, 0, 5, 3, 7, 5, 1, 2, 3, 9, 1, 3, 8, 9, 6, 8, 4, 6, 5, 4, 7, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296292 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios. LINKS EXAMPLE Ratio-sum = 8.012968903095661472515541... MATHEMATICA a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n]; j = 1; While[j < 13, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296292 *) g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200] Take[RealDigits[s, 10][[1]], 100]  (* A296434 *) CROSSREFS Cf. A001622, A296292. Sequence in context: A307224 A309595 A329074 * A164790 A250219 A037448 Adjacent sequences:  A296431 A296432 A296433 * A296435 A296436 A296437 KEYWORD nonn,easy,cons AUTHOR Clark Kimberling, Dec 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 07:32 EDT 2020. Contains 333213 sequences. (Running on oeis4.)