

A296431


Decimal expansion of ratiosum for A296278; see Comments.


0



3, 4, 2, 7, 6, 7, 9, 9, 8, 5, 9, 6, 8, 2, 9, 5, 7, 8, 5, 3, 1, 4, 9, 6, 5, 6, 7, 0, 3, 6, 4, 5, 8, 0, 3, 9, 5, 7, 5, 2, 6, 9, 8, 8, 5, 8, 2, 6, 1, 7, 6, 8, 5, 6, 2, 4, 2, 6, 5, 4, 7, 2, 8, 3, 5, 1, 0, 5, 8, 5, 0, 8, 4, 6, 2, 6, 3, 4, 4, 6, 3, 6, 0, 6, 9, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n1) > g. The ratiosum for A is a(1)/a(0)  g + a(2)/a(1)  g + ..., assuming that this series converges. For A = A296278 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425A296434 for related ratiosums and A296452A296461 for related limiting powerratios.


LINKS



EXAMPLE

ratiosum = 34.27679985968295785314965...


MATHEMATICA

a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n  1] + a[n  2] + b[n  2]*b[n  1]*b[n];
j = 1; While[j < 13, k = a[j]  j  1;
While[k < a[j + 1]  j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296278 *)
g = GoldenRatio; s = N[Sum[ g + a[n]/a[n  1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296278 *)


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



