login
A296278
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
4
1, 2, 63, 185, 458, 979, 1941, 3640, 6571, 11531, 19818, 33533, 56081, 92974, 153135, 251005, 409954, 667799, 1085733, 1762772, 2859131, 4634047, 7506978, 12156625, 19681153, 31857434, 51560511, 83442305, 135029786, 218501851, 353564373, 572102128, 925705771
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 63
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296278 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A209183 A200802 A262005 * A239744 A024238 A234279
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 13 2017
STATUS
approved