The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220338 A modified Engel expansion for 8*sqrt(6) - 19. 9
 2, 6, 10, 2, 50, 98, 2, 4802, 9602, 2, 46099202, 92198402, 2, 4250272665676802, 8500545331353602, 2, 36129635465198759610694779187202, 72259270930397519221389558374402, 2, 2610701117696295981568349760414651575095962187244375364404428802 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For a brief description of the modified Engel expansion of a real number see A220335. Let p >= 2 be an integer and set Q(p) = (p - 1)*sqrt(p^2 - 1) - (p^2 - p - 1), so Q(5) = 8*sqrt(6) - 19. Iterating the identity Q(p) = 1/2 + 1/(2*(p+1)) + 1/(2*(p+1)*(2*p)) + 1/(2*(p+1)*(2*p))*Q(2*p^2-1) leads to a representation for Q(p) as an infinite series of unit fractions. The sequence of denominators of these unit fractions can be used to find the modified Engel expansion of Q(p). For further details see the Bala link. The present sequence is the case p = 5. For other cases see A220335 (p = 2), A220336 (p = 3) and A220337 (p = 4). LINKS S. Crowley, Integral transforms of the harmonic sawtooth map, the Riemann zeta function, fractal strings, and a finite reflection formula, arXiv:1210.5652 [math.NT] Wikipedia, Engel Expansion FORMULA Define the harmonic sawtooth map h(x) := floor(1/x)*(x*ceiling(1/x) - 1). Let x = 8*sqrt(6) - 19. Then a(1) = ceiling(1/x) and for n >= 2, a(n) = floor(1/h^(n-2)(x))*ceiling(1/h^(n-1)(x)), where h^(n)(x) denotes the n-th iterate of the map h(x), with the convention h^(0)(x) = x. a(3*n+2) = 1/2*{2 + (5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} and a(3*n+3) = {(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} both for n >= 0. For n >= 0, a(3*n+1) = 2. For n >= 1, a(3*n+2) = 2*A084765(n)^2 and a(3*n+3) = 4*A085765(n)^2 - 2. Recurrence equations: For n >= 1, a(3*n+2) = 2*{a(3*n-1)^2 - 2*a(3*n-1) + 1} and a(3*n+3) = 2*a(3*n+2) - 2. Put P(n) = product(k = 0..n} a(k). Then we have the infinite Egyptian fraction representation 8*sqrt(6) - 19 = sum {n >=0} 1/P(n) = 1/2 + 1/(2*6) + 1/(2*6*10) + 1/(2*6*10*2) + 1/(2*6*10*2*50) + .... CROSSREFS Cf. A084765, A220335 (p = 2), A220336 (p = 3), A220337 (p = 4). Sequence in context: A333185 A236106 A095105 * A052194 A320383 A073662 Adjacent sequences:  A220335 A220336 A220337 * A220339 A220340 A220341 KEYWORD nonn,easy AUTHOR Peter Bala, Dec 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 20:03 EDT 2021. Contains 345121 sequences. (Running on oeis4.)