OFFSET
1,1
COMMENTS
a(1)=2; a(n) is the smallest number not already in the sequence such that a(n)*a(n-1) + 1 is a prime. Some numbers retain their places (that is an even number 2n retains its n-th position), such numbers are in A076023.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
Avail:= 2*[$2..110]:
A[1]:= 2:
for n from 2 do
found:= false:
for i in Avail do
if isprime(i*A[n-1]+1) then
A[n]:= i;
Avail:= subs(i=NULL, Avail);
found:= true;
break
fi
od;
if not found then break fi
od:
seq(A[i], i=1..n-1); # Robert Israel, Jul 16 2018
MATHEMATICA
amax = 200; a[1] = 2; aa = Range[4, amax, 2];
a[n_] := a[n] = For[k = 1, k <= Length[aa], k++, an = aa[[k]]; If[PrimeQ[ a[n - 1] an + 1], aa = Delete[aa, k]; Return[an]]];
DeleteCases[Array[a, Floor[amax/2]], Null] (* Jean-François Alcover, Feb 28 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 10 2002
EXTENSIONS
More terms from Hans Havermann, Sep 23 2002
STATUS
approved