|
|
A228799
|
|
Number of 4 X n binary arrays with top left element equal to 1 and no two ones adjacent horizontally or nw-se.
|
|
1
|
|
|
8, 13, 156, 586, 3957, 19474, 111966, 596273, 3292024, 17872116, 97776195, 533053286, 2910670434, 15882108643, 86688323910, 473098799920, 2582083666591, 14092131350712, 76910993201528, 419756836650551, 2290910858988482
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = a(n-1) + 20*a(n-2) + 27*a(n-3) - 14*a(n-4) - 25*a(n-5) + 4*a(n-6) + 5*a(n-7) - a(n-8).
Empirical g.f.: x*(8 + 5*x - 17*x^2 - 46*x^3 + 12*x^4 - 33*x^5 + 7*x^6) / ((1 + x)*(1 + 2*x - x^2)*(1 - 4*x - 9*x^2 + 5*x^3 + 4*x^4 - x^5)). - Colin Barker, Sep 13 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..1..0..0..1....1..0..0..1....1..0..1..0....1..0..0..0....1..0..0..1
..0..0..1..0....1..0..0..1....1..0..1..0....1..0..0..1....0..0..0..0
..0..1..0..0....1..0..1..0....1..0..0..0....1..0..1..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..1....0..0..1..0....0..1..0..0
|
|
CROSSREFS
|
Row 4 of A228796.
Sequence in context: A107764 A306131 A177183 * A329499 A220393 A344659
Adjacent sequences: A228796 A228797 A228798 * A228800 A228801 A228802
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Sep 04 2013
|
|
STATUS
|
approved
|
|
|
|