login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174305
Values of the family of polynomials y = x^n + 1 at point x = discriminant of y.
8
2, 17, -19682, 4294967297, 298023223876953126, 10314424798490535546171949057, -256923577521058878088611477224235621321606, 6277101735386680763835789423207666416102355444464034512897, 196627050475552913618075908526912116283103450944214766927315415537966391196810
OFFSET
1,1
LINKS
MAPLE
f:= proc(n) local x, d, p;
p:= x^n+1;
eval(p, x=discrim(p, x))
end proc:
map(f, [$1..10]); # Robert Israel, Jan 03 2020
MATHEMATICA
Clear[x]; s = {}; Do[d = Discriminant[x^n + 1, x]; AppendTo[s, d^n - 1], {n, 1, 10}]; s
PROG
(PARI) a(n) = my(p=x^n+1); subst(p, x, poldisc(p)); \\ Michel Marcus, Mar 02 2023
KEYWORD
sign
AUTHOR
Artur Jasinski, Mar 15 2010
STATUS
approved