|
|
A283957
|
|
Primes p such that 6p - 1 and 6p + 1 are twin primes and ((6p-1)^2 + (6p+1)^2) / 10 is prime.
|
|
1
|
|
|
2, 7, 17, 467, 1033, 2287, 2333, 3413, 7523, 10357, 14723, 15073, 17467, 18077, 19423, 19583, 20177, 24337, 26113, 26357, 26987, 27437, 28627, 29327, 32077, 32323, 33637, 42787, 45127, 46183, 46273, 46457, 53093, 54443, 55333, 57493, 64927, 73363, 75133, 76213, 76493, 76907, 81883, 82633, 86587
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Only for prime p = 5 there are twin primes 6*5-1 = 29 and 6*5+1 = 31 such that 10 not divides (29^2 + 31^2) = 1802.
|
|
LINKS
|
|
|
FORMULA
|
a(n) == +-2 (mod 5).
|
|
EXAMPLE
|
7 is a term because 7, 6*7-1 = 41, 6*7+1 = 43, and (41^2 + 43^2)/10 = 353 are prime numbers.
|
|
MATHEMATICA
|
Select[Prime@ Range[10^4], Times @@ Boole@ Map[PrimeQ, 6 # + {-1, 1}] == 1 && PrimeQ[((6 # - 1)^2 + (6 # + 1)^2)/10] &] (* Michael De Vlieger, Mar 20 2017 *)
Select[Prime[Range[8500]], AllTrue[{6#-1, 6#+1, ((6#-1)^2+(6#+1)^2)/10}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 09 2018 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|