login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283959
a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 5.
3
1, 1, 1, 1, 1, 5, 13, 33, 85, 561, 1597, 4229, 11089, 73393, 209089, 553873, 1452529, 9613829, 27388957, 72553041, 190270165, 1259338113, 3587744173, 9503894405, 24923939041, 164963678881, 469967097601, 1244937613921, 3264845744161, 21608982595205
OFFSET
1,6
LINKS
FORMULA
a(4*k-1) = 3*a(4*k-2) - a(4*k-3) - 1,
a(4*k) = 3*a(4*k-1) - a(4*k-2) - 1,
a(4*k+1) = 3*a(4*k) - a(4*k-1) - 1,
a(4*k+2) = 7*a(4*k+1) - a(4*k) - 1.
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 - 131*x^4 - 127*x^5 - 119*x^6 - 99*x^7 + 85*x^8 + 33*x^9 + 13*x^10 + 5*x^11) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - 131*x^4 + x^8)).
a(n) = 132*a(n-4) - 132*a(n-8) + a(n-12) for n>12.
(End)
MATHEMATICA
a[n_]:= If[n<6, 1, (Sum[a[n-j] , {j, 4}] + a[n - 1] a[n - 4])/a[n - 5]]; Table[a[n], {n, 30}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) a(n) = if(n<6, 1, (sum(j=1, 4, a(n - j)) + a(n - 1)*a(n - 4))/a(n - 5));
for(n=1, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283330.
Cf. A072881 (h=3), A283958 (h=4), this sequence (h=5), A283960 (h=6).
Sequence in context: A183774 A027051 A109786 * A055426 A146621 A147086
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved