login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027051
a(n) = T(n,2n-2), T given by A027023.
2
1, 5, 13, 33, 85, 221, 581, 1545, 4149, 11237, 30657, 84169, 232361, 644573, 1795717, 5021801, 14091829, 39665893, 111965785, 316857945, 898797441, 2555025821, 7277679961, 20767821489, 59365259065, 169967668645, 487356812589
OFFSET
2,2
LINKS
FORMULA
Conjecture: D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(13*n-18)*a(n-2) +(n-13)*a(n-3) +(-13*n+64)*a(n-4) +(3*n-25)*a(n-5) +(-n+2)*a(n-6) +3*(n-5)*a(n-7)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 5/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023
MAPLE
T:= proc(n, k) option remember;
if k<3 or k=2*n then 1
else add(T(n-1, k-j), j=1..3)
fi
end:
seq(T(n, 2*n-2), n=2..30); # G. C. Greubel, Nov 05 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-2], {n, 2, 30}] (* G. C. Greubel, Nov 05 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<3 or k==2*n): return 1
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n, 2*n-2) for n in (2..30)] # G. C. Greubel, Nov 05 2019
CROSSREFS
Cf. A027023.
Sequence in context: A185454 A278764 A183774 * A109786 A283959 A055426
KEYWORD
nonn
STATUS
approved