Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 08 2023 04:13:03
%S 1,5,13,33,85,221,581,1545,4149,11237,30657,84169,232361,644573,
%T 1795717,5021801,14091829,39665893,111965785,316857945,898797441,
%U 2555025821,7277679961,20767821489,59365259065,169967668645,487356812589
%N a(n) = T(n,2n-2), T given by A027023.
%H G. C. Greubel, <a href="/A027051/b027051.txt">Table of n, a(n) for n = 2..750</a>
%F Conjecture: D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(13*n-18)*a(n-2) +(n-13)*a(n-3) +(-13*n+64)*a(n-4) +(3*n-25)*a(n-5) +(-n+2)*a(n-6) +3*(n-5)*a(n-7)=0. - _R. J. Mathar_, Jun 24 2020
%F a(n) ~ 3^(n + 5/2) / (2 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 08 2023
%p T:= proc(n, k) option remember;
%p if k<3 or k=2*n then 1
%p else add(T(n-1, k-j), j=1..3)
%p fi
%p end:
%p seq(T(n,2*n-2), n=2..30); # _G. C. Greubel_, Nov 05 2019
%t T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-2], {n,2,30}] (* _G. C. Greubel_, Nov 05 2019 *)
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (k<3 or k==2*n): return 1
%o else: return sum(T(n-1, k-j) for j in (1..3))
%o [T(n, 2*n-2) for n in (2..30)] # _G. C. Greubel_, Nov 05 2019
%Y Cf. A027023.
%K nonn
%O 2,2
%A _Clark Kimberling_