login
A183774
Half the number of (n+1) X 2 binary arrays with no 2X2 subblock having exactly 2 ones.
2
2, 5, 13, 33, 85, 217, 557, 1425, 3653, 9353, 23965, 61377, 157237, 402745, 1031693, 2642673, 6769445, 17340137, 44417917, 113778465, 291450133, 746563993, 1912364525, 4898620497, 12548078597, 32142560585, 82334874973, 210905117313, 540244617205, 1383865086457, 3544843555277
OFFSET
0,1
COMMENTS
a(n) appears to be sum of the elements of the n-th power of the matrix {{1, 2}, {2, 0}}. - Griffin N. Macris, Mar 25 2016
Let b(n) and c(n) be the number of such arrays where the two values in the bottom row are equal and not equal respectively so that a(n) = (1/2)*(b(n) + c(n)). Then b(n) and c(n) satisfy the recursive equations b(n+1) = b(n) + 2*c(n) and c(n+1) = 2*b(n). These equations correspond to the observation above and lead to an order 2 linear recurrence for a(n). - Andrew Howroyd, Jan 09 2025
FORMULA
a(n) = a(n-1) + 4*a(n-2).
a(n) = (sqrt(17)/34)*((21 + 5*sqrt(17))*(1/2 + sqrt(17)/2)^(n-1) - (21 - 5*sqrt(17))*(1/2 - sqrt(17)/2)^(n-1)). - Taras Goy, Jan 04 2025
G.f.: (2 + 3*x)*(1 - x - 4*x^2). - Andrew Howroyd, Jan 09 2025
EXAMPLE
Some solutions with a(1,1)=0 for 3 X 2:
..0..1....0..0....0..1....0..1....0..1....0..0....0..0....0..1....0..0....0..0
..1..1....0..1....1..1....0..0....0..0....0..1....1..0....1..1....0..0....1..0
..1..1....0..0....1..0....1..0....0..0....1..1....1..1....0..1....0..0....0..0
PROG
(PARI) a(n)=vecsum([1, 1]*[1, 2; 2, 0]^n) \\ Andrew Howroyd, Jan 09 2025
CROSSREFS
Column 1 of A183782.
Sequence in context: A077939 A077986 A007020 * A080888 A052988 A001429
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2011
EXTENSIONS
a(0) = 2 prepended by Andrew Howroyd, Jan 09 2025
STATUS
approved