The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283330 a(n) = (1 + Sum_{j=1..K-1} a(n-j) + a(n-1)*a(n-K+1))/a(n-K) with a(1),...,a(K)=1, where K=5. 3
 1, 1, 1, 1, 1, 6, 16, 41, 106, 806, 2311, 6126, 16066, 122401, 351136, 931006, 2441881, 18604041, 53370241, 141506681, 371149801, 2827691726, 8111925376, 21508084401, 56412327826, 429790538206, 1232959286791, 3269087322166, 8574302679706, 65325334115481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1838 Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016; see also. FORMULA From Seiichi Manyama, Mar 18 2017: (Start) a(4*n-1) = 3*a(4*n-2) - a(4*n-3) - 1, a(4*n)   = 3*a(4*n-1) - a(4*n-2) - 1, a(4*n+1) = 3*a(4*n)   - a(4*n-1) - 1, a(4*n+2) = 8*a(4*n+1) - a(4*n)   - 1. (End) PROG (Ruby) def A(k, n)   a = Array.new(k, 1)   ary = [1]   while ary.size < n     j = (1..k - 1).inject(1){|s, i| s + a[-i]} + a[1] * a[-1]     break if j % a[0] > 0     a = *a[1..-1], j / a[0]     ary << a[0]   end   ary end def A283330(n)   A(5, n) end # Seiichi Manyama, Mar 18 2017 CROSSREFS Cf. A276123, A283329. Sequence in context: A261819 A073570 A283960 * A263325 A107614 A317758 Adjacent sequences:  A283327 A283328 A283329 * A283331 A283332 A283333 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 17 2017 EXTENSIONS More terms from Seiichi Manyama, Mar 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 18:37 EDT 2020. Contains 333117 sequences. (Running on oeis4.)