login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283958
a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 4.
3
1, 1, 1, 1, 4, 10, 25, 139, 391, 1033, 5806, 16384, 43345, 243685, 687709, 1819441, 10228936, 28867366, 76373161, 429371599, 1211741635, 3205853305, 18023378194, 50864281276, 134569465633, 756552512521, 2135088071929, 5648711703265, 31757182147660
OFFSET
1,5
LINKS
FORMULA
a(3*k) = 3*a(3*k-1) - a(3*k-2) - 1,
a(3*k+1) = 3*a(3*k) - a(3*k-1) - 1,
a(3*k+2) = 6*a(3*k+1) - a(3*k) - 1.
G.f.: -x*(4*x^8 + 10*x^7 + 25*x^6 - 33*x^5 - 39*x^4 - 42*x^3 + x^2 + x + 1) / ((x - 1)*(x^2 + x + 1)*(x^6 - 42*x^3 + 1)). - Alois P. Heinz, Mar 20 2017
MATHEMATICA
a[n_]:= If[n<5, 1, (Sum[a[n-j] , {j, 3}] + a[n - 1] a[n - 3])/a[n - 4]]; Table[a[n], {n, 29}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) a(n) = if(n<5, 1, (sum(j=1, 3, a(n - j)) + a(n - 1)*a(n - 3))/a(n - 4));
for(n=1, 29, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283329.
Cf. A072881 (h=3), this sequence (h=4), A283959 (h=5), A283960 (h=6).
Sequence in context: A282389 A361611 A145775 * A335637 A255718 A001214
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved