Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 20 2017 10:23:10
%S 1,1,1,1,4,10,25,139,391,1033,5806,16384,43345,243685,687709,1819441,
%T 10228936,28867366,76373161,429371599,1211741635,3205853305,
%U 18023378194,50864281276,134569465633,756552512521,2135088071929,5648711703265,31757182147660
%N a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 4.
%H Seiichi Manyama, <a href="/A283958/b283958.txt">Table of n, a(n) for n = 1..1852</a>
%F a(3*k) = 3*a(3*k-1) - a(3*k-2) - 1,
%F a(3*k+1) = 3*a(3*k) - a(3*k-1) - 1,
%F a(3*k+2) = 6*a(3*k+1) - a(3*k) - 1.
%F G.f.: -x*(4*x^8 + 10*x^7 + 25*x^6 - 33*x^5 - 39*x^4 - 42*x^3 + x^2 + x + 1) / ((x - 1)*(x^2 + x + 1)*(x^6 - 42*x^3 + 1)). - _Alois P. Heinz_, Mar 20 2017
%t a[n_]:= If[n<5, 1, (Sum[a[n-j] , {j, 3}] + a[n - 1] a[n - 3])/a[n - 4]]; Table[a[n], {n, 29}] (* _Indranil Ghosh_, Mar 18 2017 *)
%o (PARI) a(n) = if(n<5, 1, (sum(j=1, 3, a(n - j)) + a(n - 1)*a(n - 3))/a(n - 4));
%o for(n=1, 29, print1(a(n),", ")) \\ _Indranil Ghosh_, Mar 18 2017
%Y Cf. A283329.
%Y Cf. A072881 (h=3), this sequence (h=4), A283959 (h=5), A283960 (h=6).
%K nonn,easy
%O 1,5
%A _Seiichi Manyama_, Mar 18 2017