login
A282389
Number of squares in triangle-shaped polyominoes obtained by adding three identical polyominoes to the previous one, starting with one L-tetromino.
2
4, 10, 25, 70, 238, 901, 3445, 13390, 52942, 210226, 838450, 3350725, 13393093, 53547790, 214151950, 856558645, 3426077749, 13703917774, 54815043790, 219258602290, 877031899954, 3508124454085, 14032487779525, 56129938535185, 224519713993489, 898078755310654
OFFSET
0,1
COMMENTS
Each polyomino a(n) has a width of A282390(n+1) squares and a height of A000051(n) squares.
FORMULA
a(0) = 4; a(n) = a(n-1) + 3*(A282390(n)*A000051(n-1) - a(n-1)) for n > 0.
a(n) = A282390(n+(n mod 2))*A000051(n-(n mod 2)) for n > 0.
a(n) = (A282390(n+(n mod 2)) - A000051(n-1+(n mod 2)))*A000051(n-(n mod 2)) + A028401(n+2) for n > 0.
PROG
(Python)
m = [3, 1]
for i in range(25):
w, h = m[0], len(m)
print(sum(m)) # print(w) for widths of the polyominoes
m2 = [w-x for x in reversed(m) if w>x]
m = [w+x for x in m2] + [w for x in m if x==w] + m2
# Andrey Zabolotskiy, Feb 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved