login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282390
Width of polyominoes in A282389.
2
3, 5, 8, 14, 27, 53, 104, 206, 410, 818, 1635, 3269, 6536, 13070, 26139, 52277, 104552, 209102, 418202, 836402, 1672803, 3345605, 6691209, 13382417, 26764832, 53529662, 107059322, 214118642, 428237283, 856474565, 1712949128, 3425898254, 6851796507
OFFSET
1,1
COMMENTS
Polyominoes in A282389 have got a width of a(n+1) squares and a height of A000051(n) squares.
The polyomino may be represented as a sequence of the lengths of steps in the "ladder" of the polyomino: [2, 1] for L-tetromino, [2, 1, 2] for the next iteration, and so on. The overall width is the sum of these lengths. And on the next iteration, the new sequence of lengths of steps is formed from the previous one as: <previous sequence, reversed, with the first (after reversion) element removed> + <previous sequence, reversed>. So the sequence always consists of 1's and 2's only and therefore can be encoded as a binary string of length 2^n+1. This is exploited in the Python program below and explains the formula. - Andrey Zabolotskiy, Feb 14 2017
LINKS
FORMULA
a(1) = 3, a(n) = 2*a(n-1) - k for n > 1, where k is the width of the central step in the "ladder", which is 1 or 2.
EXAMPLE
a(1) = 3
a(2) = 2 * 3 - 1 = 5
a(3) = 2 * 5 - 2 = 8
a(4) = 2 * 8 - 2 = 14
a(5) = 2 * 14 - 1 = 27
a(6) = 2 * 27 - 1 = 53
a(7) = 2 * 53 - 2 = 104
a(8) = 2 * 104 - 2 = 206
a(9) = 2 * 206 - 2 = 410
a(10) = 2 * 410 - 2 = 818
a(11) = 2 * 818 - 1 = 1635
a(12) = 2 * 1635 - 1 = 3269
a(13) = 2 * 3269 - 2 = 6536
a(14) = 2 * 6536 - 2 = 13070
a(15) = 2 * 13070 - 1 = 26139
a(16) = 2 * 26139 - 1 = 52277
a(17) = 2 * 52277 - 2 = 104552
a(18) = 2 * 104552 - 2 = 209102
PROG
(Python)
w, h, bp, bp2 = 3, 2, 0b10, 0b01
for i in range(1, 10):
print(w)
w, h, bp, bp2 = w*2-(2 if (bp&1) else 1), 2**i+1, ((bp2&((1<<(h-1))-1))<<h)+bp2, (bp<<(h-1))+(bp>>1)
for i in range(100):
print(w)
w, h, bp, bp2 = w*2-(2 if (bp&1) else 1), h-1, bp2, (bp>>1)
# Andrey Zabolotskiy, Feb 14 2017
CROSSREFS
Cf. A282389.
Sequence in context: A175378 A072655 A108301 * A095290 A080999 A077579
KEYWORD
nonn
AUTHOR
STATUS
approved