login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347725
Number of irredundant sets in the (2n-1)-triangular snake graph (for n > 1).
0
1, 4, 10, 25, 64, 163, 415, 1057, 2692, 6856, 17461, 44470, 113257, 288445, 734617, 1870936, 4764934, 12135421, 30906712, 78713779, 200469691, 510559873, 1300303216, 3311635996, 8434135081, 21480209374, 54706189825, 139326724105, 354839847409, 903712608748
OFFSET
1,2
COMMENTS
The 1-triangular snake is K_1, which has two trivial irredundant sets ({} and {1}), which differs from a(1).
LINKS
Eric Weisstein's World of Mathematics, Irredundant Set
Eric Weisstein's World of Mathematics, Triangular Snake Graph
FORMULA
a(n) = 2*a(n-1)+a(n-2)+a(n-3) for n > 3.
G.f.: x*(-1-2*x-x^2)/(-1+2*x+x^2+x^3).
MATHEMATICA
Table[-RootSum[-1 - # - 2 #^2 + #^3 &, -9 #^n - 16 #^(n + 1) + 5 #^(n + 2) &]/29, {n, 20}]
LinearRecurrence[{2, 1, 1}, {1, 4, 10}, 20]
CoefficientList[Series[(-1 - 2 x - x^2)/(-1 + 2 x + x^2 + x^3), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A225301 A298412 A289245 * A097136 A049348 A282389
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 11 2021
STATUS
approved