login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060212
Primes q such that 6*q-1 and 6*q+1 are twin primes. Proper subset of A002822.
14
2, 3, 5, 7, 17, 23, 47, 103, 107, 137, 283, 313, 347, 373, 397, 443, 467, 577, 593, 653, 773, 787, 907, 1033, 1117, 1423, 1433, 1613, 1823, 2027, 2063, 2137, 2153, 2203, 2287, 2293, 2333, 2347, 2677, 2903, 3257, 3307, 3407, 3413, 3593, 3623, 3673, 3923
OFFSET
1,1
COMMENTS
Primes in A182521. Also all primes p for which A182481(p)=1. - Vladimir Shevelev, May 03 2012
Conjecture: a(n) ~ n*log(n)*log(n*log(n))*log(log(n)). - Carl R. White, Nov 16 2023
LINKS
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[6*p-1] && PrimeQ[6*p+1], AppendTo[lst, p]], {n, 100}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 16 2009 *)
PROG
(PARI) forprime(p=2, 9999, if(isprime(6*p+1) & isprime(6*p-1), print(p))) \\ David Radcliffe, Apr 02 2016
(Python) from sympy import *; print([p for p in primerange(2, 9999) if isprime(6*p-1) and isprime(6*p+1)]) # David Radcliffe, Apr 02 2016
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 20 2001
STATUS
approved