OFFSET
1,1
COMMENTS
If a(k) is of the form 3·2^(h-1)-1 and 2*a(k)+1 is prime, then 2^h*a(k)*(2*a(k)+1) and 2^h*(2*a(k)^2+4*a(k)+1) are a pair of amicable numbers. - Vincenzo Librandi, Jun 09 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
MATHEMATICA
lst={}; Do[p=Prime@n; a=2*p^2+4*p+1; If[PrimeQ@a, AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
Select[Range[2000], PrimeQ[#]&&PrimeQ[2 #^2 + 4 # + 1]&] (* Vincenzo Librandi, Apr 08 2013 *)
Select[Prime[Range[250]], PrimeQ[2#^2+4#+1]&] (* Harvey P. Dale, Sep 06 2022 *)
PROG
(Magma) [p: p in PrimesUpTo(1500) | IsPrime(2*p^2+4*p+1)]; // Vincenzo Librandi, Apr 08 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 08 2009
EXTENSIONS
Extended by R. J. Mathar, Aug 11 2009
STATUS
approved