login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164042
Primes p such that 2*p^2+4*p+1 is also prime.
2
2, 3, 5, 7, 17, 23, 37, 41, 61, 79, 97, 101, 107, 131, 139, 157, 163, 191, 199, 227, 241, 269, 293, 311, 331, 373, 383, 401, 409, 439, 443, 457, 467, 541, 569, 601, 607, 619, 653, 709, 719, 773, 839, 853, 881, 929, 947, 983, 1031, 1063, 1087, 1097, 1109, 1153, 1231, 1249
OFFSET
1,1
COMMENTS
If a(k) is of the form 3·2^(h-1)-1 and 2*a(k)+1 is prime, then 2^h*a(k)*(2*a(k)+1) and 2^h*(2*a(k)^2+4*a(k)+1) are a pair of amicable numbers. - Vincenzo Librandi, Jun 09 2014
LINKS
MATHEMATICA
lst={}; Do[p=Prime@n; a=2*p^2+4*p+1; If[PrimeQ@a, AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
Select[Range[2000], PrimeQ[#]&&PrimeQ[2 #^2 + 4 # + 1]&] (* Vincenzo Librandi, Apr 08 2013 *)
Select[Prime[Range[250]], PrimeQ[2#^2+4#+1]&] (* Harvey P. Dale, Sep 06 2022 *)
PROG
(Magma) [p: p in PrimesUpTo(1500) | IsPrime(2*p^2+4*p+1)]; // Vincenzo Librandi, Apr 08 2013
CROSSREFS
Cf. A164041.
Sequence in context: A164134 A152184 A135948 * A248344 A060212 A107439
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 08 2009
EXTENSIONS
Extended by R. J. Mathar, Aug 11 2009
STATUS
approved