login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164045
a(n+1) = 5*a(n) - n.
2
1, 4, 18, 87, 431, 2150, 10744, 53713, 268557, 1342776, 6713870, 33569339, 167846683, 839233402, 4196166996, 20980834965, 104904174809, 524520874028, 2622604370122, 13113021850591, 65565109252935, 327825546264654
OFFSET
0,2
FORMULA
a(0)=1; a(n+1) = 5*a(n) - n.
a(n) = (11*5^n + 4*n + 5)/16.
From R. J. Mathar, Aug 09 2009: (Start)
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3).
G.f.: (1-3*x+x^2)/((1-5*x)*(1-x)^2). (End)
E.g.f.: (1/16)*(11*exp(5*x) + (4*x + 5)*exp(x)). - G. C. Greubel, Sep 08 2017
MATHEMATICA
Table[(11*5^n + 4*n + 5)/16, {n, 0, 50}] (* G. C. Greubel, Sep 08 2017 *)
LinearRecurrence[{7, -11, 5}, {1, 4, 18}, 30] (* or *) nxt[{n_, a_}]:={n+1, 5a-n-1}; NestList[nxt, {0, 1}, 30][[;; , 2]] (* Harvey P. Dale, Sep 29 2023 *)
PROG
(PARI) a(n) = (11*5^n + 4*n + 5)/16 \\ Michel Marcus, Jul 18 2013
CROSSREFS
Sequence in context: A111966 A225887 A153294 * A178577 A130524 A298646
KEYWORD
nonn
AUTHOR
Rolf Pleisch, Aug 08 2009
STATUS
approved