The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225887 a(n) = A212205(2*n + 1). 2
 1, 4, 18, 86, 426, 2162, 11166, 58438, 309042, 1648154, 8851206, 47813790, 259585002, 1415431266, 7747200558, 42545600310, 234346445154, 1294260644906, 7165245015510, 39754745775886, 221009855334426, 1230909476804594, 6867024985408638, 38369226561522086 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Peter Bala, Apr 23 2017: (Start) a(n) is also the number of SchrÃ¶der paths of semilength n (paths from (0, 0) to (2*n, 0), using only single steps northeast or southeast (steps (1, 1) or (1, -1)) or double steps east (steps (2, 0)), that never fall below the x-axis) in which the (2,0)-steps that are on the horizontal axis come in 3 colors (see Oste and Van der Jeugt, Section 7). Example: a(2) = 18 because from the origin to the point (4,0) we have 3^2 = 9 paths of type HH, 3 paths of type HUD, 3 paths of type UDH as well as the paths UDUD, UUDD, and UHD. It follows that the sequence may be calculated as the leading diagonal of the lower triangular array (T(n,k))n,k>=0 defined by the relations: T(n,0) = 1, T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k-1) for 1 <= k <= n-1 and T(n,n) = 3*T(n-1,n-1) + T(n,n-1). The array begins: [1], [1, 4], [1, 6, 18], [1, 8, 32, 86], [1, 10, 50, 168, 426].  (End) LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019. R. Oste and J. Van der Jeugt, Motzkin paths, Motzkin polynomials and recurrence relations, Electronic Journal of Combinatorics 22(2) (2015), #P2.8. Section 7. FORMULA G.f.: (-1 + 5*x + sqrt(1 - 6*x + x^2)) / (2 * (x - 6*x^2)) = 2 / (1 - 5*x + sqrt(1 - 6*x + x^2)). G.f.: A(x) = 1 / (1 - 5*x + (x - 6*x^2) * A(x)) = 1 + x * A(x) * (5 - A(x) * (1 - 6*x)). INVERT transform of A001003(n+1). INVERT transform is A134425. HANKEL transform is A006125. HANKEL transform with 1 prepended is A127850(n+1). BINOMIAL transform of A151090. Conjecture: (n+1)*a(n) +3*(-4*n-1)*a(n-1) +(37*n-20)*a(n-2) +6*(-n+2)*a(n-3)=0. - R. J. Mathar, May 23 2014 a(n) = Sum_{k=0..n}((k+1)*Sum_{j=0..n+1}(binomial(j,n-k-j)*3^(-n+k+2*j)*2^(n-k-j)*binomial(n+1,j)))/(n+1). - Vladimir Kruchinin, Mar 13 2016 a(n) ~ (1+sqrt(2))^(2*n+5) / (2^(3/4)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 13 2016 G.f.: 1/(1-3*x -x/(1-x -x/(1-x -x/(1-x - ... )))) (continued fraction) = 1/(1 - 3*x - x*S(x)), where S(x) is the generating function of the large SchrÃ¶der numbers A001003. - Peter Bala, Apr 23 2017 EXAMPLE 1 + 4*x + 18*x^2 + 86*x^3 + 426*x^4 + 2162*x^5 + 11166*x^6 + 58438*x^7 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ 2 / (1 - 5 x + Sqrt[1 - 6 x + x^2]), {x, 0, n}] PROG (PARI) {a(n) = if( n<0, 0, polcoeff( 2 / (1 -  5*x + sqrt(1 - 6*x + x^2 + x * O(x^n))), n))} (Maxima) a(n):=sum((k+1)*sum(binomial(j, n-k-j)*3^(-n+k+2*j)*2^(n-k-j)*binomial(n+1, j), j, 0, n+1), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 13 2016 */ CROSSREFS Cf. A001003, A006125, A127850, A131090, A151090, A212205, A111966. Sequence in context: A084847 A082685 A111966 * A153294 A164045 A178577 Adjacent sequences:  A225884 A225885 A225886 * A225888 A225889 A225890 KEYWORD nonn,easy AUTHOR Michael Somos, May 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 18:43 EDT 2020. Contains 334762 sequences. (Running on oeis4.)