The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212205 G.f.: ((1+2*x)*sqrt(1-6*x^2+x^4)-1+5*x^2-2*x^3)/(2*x*(1-6*x^2)). 2
 1, 1, 2, 4, 8, 18, 36, 86, 172, 426, 852, 2162, 4324, 11166, 22332, 58438, 116876, 309042, 618084, 1648154, 3296308, 8851206, 17702412, 47813790, 95627580, 259585002, 519170004, 1415431266, 2830862532, 7747200558, 15494401116, 42545600310, 85091200620, 234346445154, 468692890308, 1294260644906, 2588521289812, 7165245015510, 14330490031020 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. FORMULA a(n) ~ 2*2^(3/4)*(1+sqrt(2))^(n+3)/(n^(3/2)*sqrt(Pi)) if n is even and a(n) ~ 2^(3/4)*(1+sqrt(2))^(n+4)/(n^(3/2)*sqrt(Pi)) if n is odd. - Vaclav Kotesovec, May 21 2013 Conjecture D-finite with recurrence: (n+1)*a(n) +2*(n-1)*a(n-1) +6*(-2*n+1)*a(n-2) +12*(-2*n+5)*a(n-3) +(37*n-77)*a(n-4) +2*(37*n-151)*a(n-5) +6*(-n+5)*a(n-6) +12*(-n+7)*a(n-7)=0. - R. J. Mathar, Aug 20 2018 MAPLE a:= proc(n) option remember; `if`(n<6, [1, 1, 2, 4, 8, 18][n+1], (-132*a(n-1) +(660-834*n+84*n^2)*a(n-2) +804*a(n-3) +(2981*n-6690-259*n^2)*a(n-4) -72*a(n-5) +6*(n-6)*(7*n-59)*a(n-6)) / ((n+1)*(7*n-66))) end: seq(a(n), n=0..40); # Alois P. Heinz, May 21 2013 MATHEMATICA CoefficientList[Series[((1+2*x)*Sqrt[1-6*x^2+x^4]-1+5*x^2-2*x^3)/(2*x*(1-6*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, May 21 2013 *) CROSSREFS Sequence in context: A297188 A291583 A218874 * A018096 A024415 A339158 Adjacent sequences: A212202 A212203 A212204 * A212206 A212207 A212208 KEYWORD nonn AUTHOR N. J. A. Sloane, May 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 10:09 EDT 2024. Contains 375040 sequences. (Running on oeis4.)