login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212208
Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square diagonal grid graph DG_(n,n), highest powers first.
19
1, 0, 1, -6, 11, -6, 0, 1, -20, 174, -859, 2627, -5082, 6048, -4023, 1134, 0, 1, -42, 825, -10054, 85011, -528254, 2491825, -9084089, 25795983, -57031153, 97292827, -125639547, 118705077, -77301243, 30931875, -5709042, 0, 1, -72, 2492, -55183, 877812
OFFSET
1,4
COMMENTS
The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
LINKS
Alois P. Heinz, Rows n = 1..7, flattened
EXAMPLE
3 example graphs: o---o---o
. |\ /|\ /|
. | X | X |
. |/ \|/ \|
. o---o o---o---o
. |\ /| |\ /|\ /|
. | X | | X | X |
. |/ \| |/ \|/ \|
. o o---o o---o---o
Graph: DG_(1,1) DG_(2,2) DG_(3,3)
Vertices: 1 4 9
Edges: 0 6 20
The square diagonal grid graph DG_(2,2) equals the complete graph K_4 and has chromatic polynomial q*(q-1)*(q-2)*(q-3) = q^4 -6*q^3 +11*q^2 -6*q => row 2 = [1, -6, 11, -6, 0].
Triangle T(n,k) begins:
1, 0;
1, -6, 11, -6, 0;
1, -20, 174, -859, 2627, -5082, ...
1, -42, 825, -10054, 85011, -528254, ...
1, -72, 2492, -55183, 877812, -10676360, ...
1, -110, 5895, -205054, 5203946, -102687204, ...
1, -156, 11946, -598491, 22059705, -637802510, ...
CROSSREFS
Columns 1-2 give: A000012, (-1)*A002943(n-1).
Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522.
Sequence in context: A009443 A258054 A106540 * A334280 A134012 A103704
KEYWORD
sign,tabf
AUTHOR
Alois P. Heinz, May 04 2012
STATUS
approved