This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151090 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)} 1
 1, 3, 11, 43, 175, 731, 3111, 13427, 58591, 257947, 1143943, 5104419, 22896303, 103169899, 466725143, 2118787187, 9648585791, 44060516667, 201709358631, 925531659971, 4255568177615, 19604179972363, 90468636882231, 418164385032723, 1935725673812575, 8973094439246811, 41648668456569671 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Xiang-Ke Chang, XB Hu, H Lei, YN Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8. LINKS A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899. MATHEMATICA aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}] CROSSREFS Sequence in context: A026671 A026876 A270447 * A059278 A151091 A151092 Adjacent sequences:  A151087 A151088 A151089 * A151091 A151092 A151093 KEYWORD nonn,walk,changed AUTHOR Manuel Kauers, Nov 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.